Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Acad Radiol ; 28(2): 158-165, 2021 02.
Article in English | MEDLINE | ID: covidwho-1064684

ABSTRACT

RATIONALE AND OBJECTIVE: Three-dimensional (3D) printing allows innovative solutions for personal protective equipment, particularly in times of crisis. Our goal was to generate an N95-alternative 3D-printed respirator that passed Occupational Safety and Health Administration (OSHA)-certified quantitative fit testing during the COVID-19 pandemic. MATERIALS AND METHODS: 3D printed prototypes for N95 solutions were created based on the design of commercial N95 respirators. Computed tomography imaging was performed on an anthropomorphic head phantom wearing a commercially available N95 respirator and these facial contour data was used in mask prototyping. Prototypes were generated using rigid and flexible polymers. According to OSHA standards, prototypes underwent subsequent quantitative respirator fit testing on volunteers who passed fit tests on commercial N95 respirators. RESULTS: A total of 10 prototypes were 3D printed using both rigid (n = 5 designs) and flexible materials (n = 5 designs), Prototypes generated with rigid printing materials (n = 5 designs) did not pass quantitative respirator fit testing. Three of the five prototypes with flexible materials failed quantitative fit testing. The final two prototypes designs passed OSHA-certified quantitative fit tests with an overall mean fit factor of 138 (passing is over 100). CONCLUSION: Through rapid prototyping, 3D printed N95 alternative masks were designed with topographical facial computed tomography data to create mask facial contour and passed OSHA-certified quantitative respiratory testing when flexible polymer was used. This mask design may provide an alternative to disposable N95 respirators in case of pandemic-related shortages. Furthermore, this approach may allow customization for those that would otherwise fail fit testing on standard commercial respirators.


Subject(s)
COVID-19 , Pandemics , Equipment Design , Humans , Masks , Materials Testing , N95 Respirators , Printing, Three-Dimensional , SARS-CoV-2 , Tomography, X-Ray Computed
2.
3D Printing in Medicine ; 6(1):27-27, 2020.
Article | BioMed Central | ID: covidwho-806942

ABSTRACT

Purpose Many commonly used mask designs are secured by elastic straps looping around the posterior auricular region. This constant pressure and friction against the skin may contribute to increased wearer pain, irritation, and discomfort. The purpose of this work is to report a modified 3D printed mask extender to alleviate discomfort and increase mask wearability by relieving posterior auricular pressure from isolation masks.Methods Our institutional review board designated this project as non-human research and exempt. As part of resourcing 3D printing laboratories along with individual 3D printers to provide resources to healthcare workers, mask extenders were printed to relieve posterior auricular pressure from individuals wearing isolation masks. The authors modifed an existing mask extender, increasing its length with accompanying peripheral rungs for isolation mask securement. 3D printing was performed with Ultimaker S5 (Ultimaker B.V.;Geldermalsen, Netherlands) and CR-10 (Creality3D;Shenzhen, China) 3D printers using polylactic acid filaments. The author's modified extended mask extenders were printed and freely delivered to healthcare workers (physicians, nurses, technologists, and other personnel) at the authors' institution.Results The final mask extender design was printed with the two 3D printers with a maximum 7 straps printed simultaneously on each 3D printer. Mean print times ranges from 105 minutes for the Ultimaker S5 printer and 150 minutes for the CR-10. 475 mask extenders were delivered to healthcare workers at the authors' institution, with the demand far exceeding the available supply.Conclusion We offer a modification of a 3D printed mask extender design that decreases discomfort and increases the wearability of isolation mask designs with ear loops thought to relieve posterior auricular skin pressure and ability to control strap tension. The design is simple, produced with inexpensive material (polylactic acid), and have been well-received by healthcare providers at our institution

3.
3D Print Med ; 6(1): 27, 2020 Sep 29.
Article in English | MEDLINE | ID: covidwho-802427

ABSTRACT

PURPOSE: Many commonly used mask designs are secured by elastic straps looping around the posterior auricular region. This constant pressure and friction against the skin may contribute to increased wearer pain, irritation, and discomfort. The purpose of this work is to report a modified 3D printed mask extender to alleviate discomfort and increase mask wearability by relieving posterior auricular pressure from isolation masks. METHODS: Our institutional review board designated this project as non-human research and exempt. As part of resourcing 3D printing laboratories along with individual 3D printers to provide resources to healthcare workers, mask extenders were printed to relieve posterior auricular pressure from individuals wearing isolation masks. The authors modifed an existing mask extender, increasing its length with accompanying peripheral rungs for isolation mask securement. 3D printing was performed with Ultimaker S5 (Ultimaker B.V.; Geldermalsen, Netherlands) and CR-10 (Creality3D; Shenzhen, China) 3D printers using polylactic acid filaments. The author's modified extended mask extenders were printed and freely delivered to healthcare workers (physicians, nurses, technologists, and other personnel) at the authors' institution. RESULTS: The final mask extender design was printed with the two 3D printers with a maximum 7 straps printed simultaneously on each 3D printer. Mean print times ranges from 105 min for the Ultimaker S5 printer and 150 min for the CR-10. Four hundred seventy-five mask extenders were delivered to healthcare workers at the authors' institution, with the demand far exceeding the available supply. CONCLUSION: We offer a modification of a 3D printed mask extender design that decreases discomfort and increases the wearability of isolation mask designs with ear loops thought to relieve posterior auricular skin pressure and ability to control strap tension. The design is simple, produced with inexpensive material (polylactic acid), and have been well-received by healthcare providers at our institution.

SELECTION OF CITATIONS
SEARCH DETAIL